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Recent cosmological observations strongly suggest that the universe is dominated by an unknown
form of energy with negative pressure. Why is this dark energy density of order the critical density
today? We propose that the dark energy has periodically dominated in the past so that its pre-
ponderance today is natural. We illustrate this paradigm with a model potential and show that its
predictions are consistent with all observations.

Introduction. A variety of evidence accumulated over the
last several years points to the existence of an unknown,
unclumped form of energy in the Universe. First was
an apparent concordance [1] of di�erent measurements:
the age of the Universe; the Hubble constant; the baryon
fraction in clusters; and the shape of the galactic power
spectrum. Second came the stunning observations [2]
of tens of distant Type Ia Supernovae, which found a
distance-redshift relation in accord with a cosmological
constant, but in strong disagreement with a matter dom-
inated Universe. Finally, this past year has seen analy-
ses [3] of the experiments measuring anisotropies in the
CMB. Taken together, the CMB experiments plot out a
rough shape for the power spectrum, one that is in accord
with a at Universe, but in disagreement with an open
Universe. If we believe the estimates of matter density
coming from observations of clusters [4], the only way
to get a at Universe, and hence account for the CMB
measurements, is to have an unclumped form of energy
density pervading the Universe.
Perhaps the simplest explanation of these data is that

the unclumped form of energy density corresponds to a
positive cosmological constant [5]. A non-zero but tiny
constant vacuum energy density (cosmological constant)
could conceivably be explained by some unknown string
theory symmetry (that sets the vacuum energy density
to zero) being broken by a small amount. However, to
explain in this way a constant vacuum energy density
of 2 � 10�59TeV4, which is not only small but is also
just the right value that it is just beginning to dominate
the energy density of the Universe now , would require
an unbelievable coincidence. A di�erent possibility is to
give up the dream of �nding a mechanism which would
set the vacuum energy density to exactly zero and resort
to believing that anthropic considerations select amongst
>� 10100 string vacua to �nd one with a vacuum energy
density suÆciently �ne-tuned for life. Although this an-
thropic selection mechanism is logically consistent and
even predicts a small but observable cosmological con-
stant, one might think that nature would have found a
more eÆcient mechanism to obtain a suÆciently small
cosmological constant than such extreme brute force ap-
plication of anthropic selection.
An alternative is to assume that the true vacuum en-

ergy density is zero, and to work with the idea that the
unknown, unclumped energy is due to a scalar �eld �
which has not yet reached its ground state. This idea,
which is called dynamical lambda or quintessence, has
received much attention [6] over the last several years.
However, two problems still remain. First, the �eld's
mass has to be extremely small, less than or of order
the Hubble constant today � 10�33 eV, to ensure that
it is still rolling to its vacuum con�guration. This is
in general diÆcult because scalar �elds tend to acquire
masses greater than or of order the scale of supersym-
metry breaking suppressed by at most the Planck scale:
m >� F=mPl

>� TeV2=mPl � 10�3 eV. Although diÆcult,
this could be achieved using pseudo-Nambu-Goldstone
bosons [7]. Another more speculative way to achieve
this would be to use the hypothetical symmetry (per-
haps some sort of hidden supersymmetry) that ensures
that the true vacuum energy density is zero to also pro-
tect the at directions in scalar �eld space that would
correspond to the very light scalar �elds necessary for
quintessence. The second, and perhaps even more serious
problem is that almost all of these models require that
we live in a special epoch today, when the quintessence is
just starting to dominate the energy density of the Uni-
verse, and furthermore this specialness cannot even be
justi�ed by use of anthropic arguments.
In recent years a lot of progress has been made in un-

derstanding the behavior of quintessence �elds. A broad
class of solutions, called tracker solutions [10], has been
discovered in which the �nal value of the quintessence
energy density is insensitive to the initial conditions. For
example, potentials like V = V0�

�n or V = V0 exp(1=�)
can, for suitable choices of V0, catch up with the crit-
ical density late in the evolution of the Universe for a
wide range of initial conditions and thus provide a natu-
ral setting for explaining the current acceleration of the
Universe. However, the suitable choice of V0 must be of
the order of the critical energy density today, i.e., we are
back to the problem of living at a special epoch today
and not even being able to use anthropic arguments to
justify this specialness.
In a subset of these tracking models, which we call

the exact tracker solutions [8,9], the scalar �eld energy
density is always related to the ambient energy density in
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the Universe: if the dominant component in the Universe
is radiation, then the tracking �eld's energy density also
falls o� as a�4, where a is the scale factor of the Universe.
If the dominant component is matter, then the �eld's en-
ergy density scales as a�3. This behavior arises from
an exponential potential for � (regardless of the value
of V0). Since the energy density in this �eld is always
comparable to the background density, we are not living
at a special epoch: any observer in the distant past or
future would also see the tracking �eld's energy density.
However, these tracking solutions run into two problems.
First, if their energy density today truly is dominant,
then it should also have been dominant at the time of
Big Bang Nucleosynthesis (BBN). Constraints from ob-
servations of light element abundances preclude such an
additional form of energy density at early times. Sec-
ond, tracking models have the wrong equation of state at
present since the tracking �eld behaves like matter, with
zero pressure, instead of having the necessary negative
pressure to accelerate the Universe.
In this letter we ask the question, what if the Universe

has been accelerating periodically in the past? Then the
fact that the Universe is accelerating today would not be
surprising. It would merely reect that the period is such
that the Universe is accelerating today. Of course, if it
turned out that to achieve a presently accelerating Uni-
verse the period had to be excessively �ne-tuned, then
this scenario would not be worth considering. However,
note that the assumption that there is nothing special
about the present time itself argues for the robustness
of such a scenario. If the Universe does accelerate pe-
riodically, then there is no reason why it should not be
accelerating today. If the Universe does accelerate pe-
riodically, then it is, in fact, reasonable to expect it to
accelerate today.
To judge the merits of this scenario in a concrete man-

ner, we adopt an ad-hoc potential. Though worked out
for this speci�c potential, the predictions outlined here
are the generic predictions of a periodically accelerating
Universe. The model we adopt for study is a modi�ca-
tion of the exponential potential (which leads to the exact
tracker solution). The modi�cation to the potential is a
sinusoidal modulation, which induces the tracker �eld to
oscillate about the ambient energy density. We show that
such a potential can satisfy the the BBN constraints, can
produce the right equation of state today and leads to
testable features in the CMB and matter power spectra.
We call this type of energy Tracking, Oscillating Energy,
or TOE.
The potential and the �eld evolution. Consider a scalar
�eld � with potential V (�) = V0 exp(���

p
8�G). It is

well-known [8] that such a potential leads to an attractor
solution with 
� � ��=(�� + �o) = n=�2 where �o is the
energy density in the other component of the Universe,
which is assumed to scale as a�n. Thus, no matter what
the initial conditions are for �, it always evolves so that

it tracks the rest of the density in the Universe.
Now consider the potential

V (�) = V0 exp
�
���

p
8�G

� h
1 + A sin(��

p
8�G)

i
: (1)

This potential serves to modulate the tracking behavior.
Figure 1 shows the resultant evolution of � and its en-
ergy density for a particular set of the parameters A; �.
(The normalization V0 can be set to G�2 by shifting the
initial value of �.) Also shown is the tracking solution
for this particular value of � without the modulation. As
expected, the sinusoidal term in the potential leads to
oscillations about this tracking behavior. One can ob-
tain analytic solutions for the dynamics of the potential
in Eq. (1) during radiation (n = 4) or matter (n = 3)
domination in the limit that A is small by perturbing
about the corresponding exact tracker model which has
�
p
8�G = n

� lna. The sine in Eq. (1) provides a periodic

forcing term with period lna = 2��
n� , while the natural pe-

riod [8] of the damped oscillations about the exact tracker
solution is lna = 8��=

p
(6� n)[3(3n� 2)�2 � 8n2] with

decay e-life lna = 4=(6 � n). Although the above re-
sults are strictly valid only for small A, they account re-
markably well for the behaviour shown in Figure 1. The
forced period corresponds to the longer period of 5:4 units
(n = 4) and somehwere between 5:4 units and 7:1 units
(n = 3), while the natural period corresponds to the
shorter period of 1:6 units (n = 4; 3) of the damped os-
cillations which are presumably excited by the non-linear
e�ects that appear when A is not small.
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FIG. 1. The fraction of the critical density in � for the
potential in Eq. (1). The dotted line shows the corresponding
tracking solution (A = 0). The upper set of curves shows the
evolution in � for the TOE and the tracking models.

The energy density due to � is relatively small at the
time of BBN and relatively large today for the parame-
ter set in Figure 1. It is, of course, clear that in order
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to get the right behavior at BBN and today, one has to
pick the \correct" parameter sets. This involves a bit of
�ne-tuning which, as we argue below, is quite reasonable
and natural. If one thinks of the parameter set as being
randomly selected, then there is a �nite probability that
the Universe will be accelerating today and that the en-
ergy density of � will be sub-dominant at BBN. What
is this probability? If one selects A, � and � randomly,
the chance of getting a Universe like ours is of the or-
der of 1 in a 100. The exact number (for this potential)
depends on how stringently we de�ne \a Universe like
ours". For example the tight constraints 0:4 < 
� < 0:8,
w� < �0:5, and (��=�0)BBN < 0:1 give a probability of 1
in 450, while the relaxed constraints 0:1 < 
� < 0:9 and
w� < �0:25 and (��=�0)BBN < 0:2 give a probability of 1
in 26. It is also very important to note that whatever the
extent of �ne-tuning, all of it is in dimensionless numbers.
There are no energy scales in this scenario which are to
be set by the present expansion rate of the Universe.
Power Spectra. To compare with CMB and large scale
structure observations, we compute the power spectra
of the perturbations in a TOE model. Perturbations
evolve di�erently in the presence of the scalar �eld en-
ergy density. For example, perturbations typically grow
only when the Universe is matter dominated. Therefore,
we expect a non-zero 
� to lead directly to power sup-
pression on the scales inside the horizon, with increased
suppression for larger 
�.
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FIG. 2. The angular photon power spectrum from the TOE
model of Figure 1. Also shown is a cosmological constant
model with all other parameters equal.

The prediction for the CMB angular power spectrum
is plotted in Figure 2. The primeval power spectrum
is scale-invariant with adiabatic initial conditions. Also
plotted for comparison is a model (�CDM) with cosmo-
logical constant 
� = 
� today and the rest of the cos-
mological parameters also being the same. In further dis-
cussions we will contrast the results from the TOE model

against this �CDM model. A noteworthy feature in Fig-
ure 2 is the increase in the heights of the �rst two peaks
compared to that of the �CDM model. This stems from
the fact that the gravitational potential decays more in
the presence of the additional quintessence energy den-
sity. The decay of the potential at and after recombi-
nation (the so-called Integrated Sachs-Wolfe , or ISW,
e�ect) leads [12] to enhanced power on scales l <� 600,
after which the potential becomes irrelevant. Note that
the increase in the amplitude of both the �rst and second
peak cannot be mimicked by adding more baryons, which
raise the odd peaks but lower the even ones.
On smaller scales (l >� 600), the TOE model has

smaller anisotropies. Here there are two competing ef-
fects. First, the di�erence between the TOE and the
�CDMmodels (around recombination when � is insignif-
icant) is the presence of the extra quintessence energy
density, which leads to the expansion rate in the two
models being related as{

HTOE(a) = H�CDM(a) � (1�
�(a))
�1=2

: (2)

Eq. 2 implies that all the relevant scales at recombina-
tion (which occurs at ar ' 10�3) are smaller in the TOE
model by a factor of about

p
1�
�(ar). In particu-

lar, the damping scale is smaller, which increases in the
power on small scales for the TOE model relative to the
�CDM model. The second e�ect is the large scale nor-
malization of the two models [13], and this second e�ect
more than compensates for the �rst. COBE normaliza-
tion is sensitive to scales around ` = 10 for which the dif-
ferences in the two models with regard to the late-ISW
e�ect is important. In particular, since � domination
occurs very late, the ISW contribution around ` = 10
is much larger in the TOE model. This in turn implies
that the normalization of the primeval power spectrum
is smaller, a fact noticeable in the smaller amplitude of
the photon power spectrum for the TOE model at small
scales (and also the matter power spectrum, as we will
soon see). One last e�ect that is worth pointing out con-
cerns the di�erence in the peak positions in the two mod-
els (though unlike the peak amplitudes, it is probably not
easily discerned). In particular, the TOE model has the
acoustic features in its angular power spectrum shifted to
smaller scales. This directly traces to the decrease in the
angular diameter distance to the last scattering surface,
for the TOE model. Of course, there is also the compet-
ing e�ect of the decrease in the size of the sound horizon
at last scattering for the TOE model, which minimizes
the e�ect.
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FIG. 3. The matter power spectrum from the TOE model
of Figure 1. Also shown is a cosmological constant model with
all other parameters equal. Power is signi�cantly smaller in
the TOE model.

The prediction for the matter power spectrum is plot-
ted in Figure 3. The di�erence in power at the largest
scales is due to COBE normalization and the di�erence
in the super-horizon growth factor (which is sensitive to
the equation of state of the cosmic uid) for the pertur-
bation. As one moves to smaller scales, which entered
the horizon well before the present, the di�erences in the
evolution of the matter perturbation become more pro-
nounced. The presence of the extra quintessence energy
stunts the growth of perturbation once a mode enters
the horizon. So, the earlier the mode enters the hori-
zon, the larger the growth suppression relative to the
�CDM model. In other words, smaller modes are mono-
tonically more suppressed (something that may not be
noticeable in the log plot) compared to the same modes
in �CDM model. It might also be surprising that the
� domination around a = 10�6 does not cause a more
appreciable feature (i.e., suppression) in the power spec-
trum. The reason is that the smallest scales in Figure 3
have just entered the horizon at the time of � domination
(a � 10�6).
The normalization on the small scales is generally

quoted in terms of �8, the rms mass uctuation within
a 8h�1Mpc sphere. For the parameters in Figure 1, the
TOE model has �8 = 0:4. This is several sigma smaller
than the preferred value (see e.g. [11]) of � 0:8, but could
be recti�ed by a small blue-shift in the primordial spec-
trum [14].
Conclusions. We have constructed a model wherein the
energy density tracks the dominant component in the
Universe; satis�es the BBN constraints; and has the
proper equation of state today. Further, this model
makes de�nite predictions for large scale structure and
for the CMB.
Perhaps the greatest drawback of this class of models is

the arbitrariness of the potential. In particular we know
of no theory which predicts a potential of the form given
in Eq. (1). Nonetheless, we feel that the testable predic-
tions of the model and the aesthetic quality it preserves
that we do not live in a special epoch are of suÆcient
interest to warrant further study.
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